Detecting Semantic Concepts In Digital Photographs: Low-level Features Vs. Non-Homogeneous Data Fusion

نویسنده

  • Noel Murphy
چکیده

Semantic concepts, such as faces, buildings, and other real world objects, are the most preferred instrument that humans use to navigate through and retrieve visual content from large multimedia databases. Semantic annotation of visual content in large collections is therefore essential if ease of access and use is to be ensured. Classification of images into broad categories such as indoor/outdoor, building/non-building, urban/landscape, people/no-people, etc., allows us to obtain the semantic labels without the full knowledge of all objects in the scene. Inferring the presence of high-level semantic concepts from low-level visual features is a research topic that has been attracting a significant amount of interest lately. However, the power of lowlevel visual features alone has been shown to be limited when faced with the task of semantic scene classification in heterogeneous, unconstrained, broad-topic image collections. Multi-modal fusion or combination of information from different modalities has been identified as one possible way of overcoming the limitations of single-mode approaches. In the field of digital photography, the incorporation of readily available camera metadata, i.e. information about the image capture conditions stored in the EXIF header of each image, along with the GPS information, offers a way to move towards a better understanding of the imaged scene. In this thesis we focus on detection of semantic concepts such as artificial text in video and large buildings in digital photographs, and examine how fusion of low-level visual features with selected camera metadata, using a Support Vector Machine as an integration device, affects the performance of the building detector in a genuine personal photo collection. We implemented two approaches to detection of buildings that combine content-based and the context-based information, and an approach to indoor/outdoor classification based exclusively on camera metadata. An outdoor detection rate of 85.6% was obtained using camera metadata only. The first approach to building detection, based on simple edge orientation-based features extracted at three different scales, has been tested on a dataset of 1720 outdoor images, with a classification accuracy of 88.22%. The second approach integrates the edge orientation-based features with the camera metadata-based features, both at the feature and at the decision level. The fusion approaches have been evaluated using an unconstrained dataset of 8000 genuine consumer photographs. The experiments demonstrate that the fusion approaches outperform the visual features-only approach by of 2-3% on average regardless of the operating point chosen, while all the performance measures are approximately 4% below the upper limit of performance. The early fusion approach consistently improves all performance measures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VHR Semantic Labeling by Random Forest Classification and Fusion of Spectral and Spatial Features on Google Earth Engine

Semantic labeling is an active field in remote sensing applications. Although handling high detailed objects in Very High Resolution (VHR) optical image and VHR Digital Surface Model (DSM) is a challenging task, it can improve the accuracy of semantic labeling methods. In this paper, a semantic labeling method is proposed by fusion of optical and normalized DSM data. Spectral and spatial featur...

متن کامل

Indoor vs outdoor classification of consumer photographs using low-level and semantic features

Scene categorization to indoor vs outdoor may be approached by using low-level features for inferring high-level information about the image. Low-level features such as color and texture have been used extensively in image understanding research, however, they cannot solve the problem completely. In this paper, we propose the use of a Bayesian network for integrating knowledge from low-level an...

متن کامل

On the detection of pornographic digital images

The paper addresses the problem of distinguishing between pornographic and non-pornographic photographs, for the design of semantic filters for the web. Both, decision forests of trees built according to CART (Classification And Regression Trees) methodology and Support Vectors Machines (SVM), have been used to perform the classification. The photographs are described by a set of low-level feat...

متن کامل

Image and Video Indexing Using Networks of Operators

This article presents a framework for the design of concept detection systems for image and video indexing. This framework integrates in a homogeneous way all the data and processing types. The semantic gap is crossed in a number of steps, each producing a small increase in the abstraction level of the handled data. All the data inside the semantic gap and on both sides included are seen as a h...

متن کامل

On the Application of Bayes Networks to Semantic Understanding of Consumer Photographs

Belief networks, such as Bayes nets, have emerged as an effective knowledge representation and inference engine in artificial intelligence and expert systems research. Their effectiveness is due to the ability to explicitly integrate domain knowledge in the network structure and to reduce a joint probability distribution to conditionally independence relationships. Current research in contentba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007